Estimating Large-Scale Network Convergence in the Human Functional Connectome
نویسندگان
چکیده
The study of resting-state networks provides an informative paradigm for understanding the functional architecture of the human brain. Although investigating specialized resting-state networks has led to significant advances in our understanding of brain organization, the manner in which information is integrated across these networks remains unclear. Here, we have developed and validated a data-driven methodology for describing the topography of resting-state network convergence in the human brain. Our results demonstrate the importance of an ensemble of cortical and subcortical regions in supporting the convergence of multiple resting-state networks, including the rostral anterior cingulate, precuneus, posterior cingulate cortex, posterior parietal cortex, dorsal prefrontal cortex, along with the caudate head, anterior claustrum, and posterior thalamus. In addition, we have demonstrated a significant correlation between voxel-wise network convergence and global brain connectivity, emphasizing the importance of resting-state network convergence in facilitating global brain communication. Finally, we examined the convergence of systems within each of the individual resting-state networks in the brain, revealing the heterogeneity by which individual resting-state networks balance the competing demands of specialized processing against the integration of information. Together, our results suggest that the convergence of resting-state networks represents an important organizational principle underpinning systems-level integration in the human brain.
منابع مشابه
A Network Convergence Zone in the Hippocampus
The hippocampal formation is a key structure for memory function in the brain. The functional anatomy of the brain suggests that the hippocampus may be a convergence zone, as it receives polysensory input from distributed association areas throughout the neocortex. However, recent quantitative graph-theoretic analyses of the static large-scale connectome have failed to demonstrate the centralit...
متن کاملCentralized and distributed cognitive task processing in the human connectome
A key question in modern neuroscience is how cognitive changes in a human brain can be quantified and captured by functional connectomes (FC) . A systematic approach to measure pairwise functional distance at different brain states is lacking. This would provide a straight-forward way to quantify differences in cognitive processing across tasks; also, it would help in relating these differences...
متن کاملThe frequency dimension of fMRI dynamic connectivity: Network connectivity, functional hubs and integration in the resting brain
The large-scale functional MRI connectome of the human brain is composed of multiple resting-state networks (RSNs). However, the network dynamics, such as integration and segregation between and within RSNs is largely unknown. To address this question we created high-resolution "frequency graphlets", connectivity matrices derived across the low-frequency spectrum of the BOLD fMRI resting-state ...
متن کاملMulti-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity
176 words Body – 6,135 words Figures – 8 Tables – None Supplement – community_assignments.txt, names.txt, roi.txt
متن کاملFunctional connectomics from resting-state fMRI.
Spontaneous fluctuations in activity in different parts of the brain can be used to study functional brain networks. We review the use of resting-state functional MRI (rfMRI) for the purpose of mapping the macroscopic functional connectome. After describing MRI acquisition and image-processing methods commonly used to generate data in a form amenable to connectomics network analysis, we discuss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain connectivity
دوره 5 9 شماره
صفحات -
تاریخ انتشار 2015